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Quantitative study of perivascular spaces (PVSs) in brain magnetic resonance (MR) images is important for un-
derstanding the brain lymphatic system and its relationship with neurological diseases. One of the major chal-
lenges is the accurate extraction of PVSs that have very thin tubular structures with various directions in
three-dimensional (3D) MR images. In this paper, we propose a learning-based PVS segmentation method to ad-
dress this challenge. Specifically, we first determine a region of interest (ROI) by using the anatomical brain struc-
ture and the vesselness information derived from eigenvalues of image derivatives. Then, in the ROI, we extract a
number of randomized Haar features which are normalized with respect to the principal directions of the under-
lying image derivatives. The classifier is trained by the random forest model that can effectively learn both dis-
criminative features and classifier parameters to maximize the information gain. Finally, a sequential learning
strategy is used to further enforce various contextual patterns around the thin tubular structures into the classi-
fier. For evaluation, we apply our proposed method to the 7 T brain MR images scanned from 17 healthy subjects
aged from 25 to 37. The performance is measured by voxel-wise segmentation accuracy, cluster-wise classifica-
tion accuracy, and similarity of geometric properties, such as volume, length, and diameter distributions between
the predicted and the true PVSs. Moreover, the accuracies are also evaluated on the simulation images with mo-
tion artifacts and lacunes to demonstrate the potential of our method in segmenting PVSs from elderly and pa-
tient populations. The experimental results show that our proposed method outperforms all existing PVS

segmentation methods.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Perivascular spaces (PVSs), also named Virchow-Robin spaces, are
the CSF-filled spaces surrounding the penetrating arteries and veins in
the brain. The PVSs usually have thin tubular structures less than
2 mm in diameter for healthy and young people. Recently, it has been
revealed that the PVSs play an important role in the brain lymphatic sys-
tem (Iliff et al., 2013; Rangroo Thrane et al., 2013; Yang et al., 2013;
Kress et al., 2014). Many evidences have been also found that the en-
largement or the increased number of PVSs is closely related to aging
(Heier et al., 1989; Zhu et al., 2010; Chen et al,, 2011), cognitive decline
(Maclullich et al., 2004), and small vessel diseases (Rouhl et al., 2008;
Doubal et al., 2010; Zhu et al,, 2010). Thus, the quantitative study of
PVSs is important for analyzing the causes of these neurological dis-
eases, as well as understanding the PVS functions. However, relevant
studies have been relatively limited because the majority of non-
dilated PVSs are too thin to be clearly visualized in the conventional
1.5 T or 3 T MR images. In addition, the manual delineation of thin
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tubular structures in a three-dimensional (3D) image is very time-
consuming. Especially, since the appearances of lacunes and PVSs are
very similar in a 2D slice view (Wuerfel et al., 2008a, 2008b; Wardlaw
etal,, 2013), clinicians have to check multiple views for accurate PVS de-
lineation. Due to these difficulties, PVS rating scales were often ambigu-
ous in the literature, and the reported quantitative diameters and
lengths were inconsistent (Hernandez Mdel et al., 2013). Recently,
with the increased signal to noise ratio of 7 T MR scanners (Bouvy
et al.,, 2014), PVSs can be shown even in the MR images scanned from
healthy subjects. However, the manual delineation becomes more and
more challenging, with the increased number of visible PVSs. For exam-
ple, although Bouvy et al. (2014) demonstrated the increased sensitivity
of 7 T MR images to visualize PVS, their quantitative analysis was per-
formed only on the 2D slice view due to the segmentation challenge.
Thus, an accurate characterization of PVS morphology could not be
achieved. Accordingly, development of an accurate and reliable auto-
matic PVS segmentation method for 7 T MR images is necessary to accel-
erate the relevant aging and disease studies.

However, so far, few automatic methods have been developed for
PVS segmentation. Wuerfel et al. (2008a, 2008b) segmented the PVSs
by using a semi-automatic software, which can adjust intensity
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Table 1
The MR acquisition parameters of T1- and T2-weighted images.

VFA-TSE VFA-TSE MP2RAGE
(resolution 1) (resolution 2)
TE (ms) 457 319 1.89
TR (ms) 5000 5000 6000
Matrix size 448 x 362 x 288 512 x 404 x 208 308 x 304 x 256
Resolution (mm?) 0.48 x 0.48 x 0.50 0.41 x 0.41 x 0.40 0.65 x 0.65 x 0.65
FOV (cm?) 21.5x174x 144 21.0x16.7x 83 20.0x 19.7 x 16.6
FA (degree) Variable Variable 4 (TI), 4 (TI2)
Slice orientation Axial Axial Sagittal
TI (ms) N.A N.A. 800/2700
GRAPPA factor 3 (PE1) 3 (PE1) 3 (PE1)
Bandwidth 700 349 290
(Hz/pixel)
Number of average 1 1 1
TA (min) 12:25 13:00 9:42

threshold (Makale et al., 2002). Descombes et al. (2004) constructed a
model defined by the pre-defined PVS filters and geometric properties,
and then optimized it by the Markov chain Monte Carlo method.
Uchiyama et al. (2008) enhanced the intensities of tubular structures
using white top-hat transformation, and then extracted them by inten-
sity thresholding. Subsequently, they identified the PVSs by using geo-
metric properties such as the location, size, and degree of irregularity.
Ramirez et al. (Ramirez et al., 2011; Ramirez et al., 2015) proposed a
semi-automatic segmentation method, namely Lesion Explorer, which
exploited T1, T2, and PD images for the segmentation of subcortical
hyperintensities. They first conducted tissue segmentation on T1
image, identified several anatomical landmarks required for regional
parcellation, and, finally, extracted subcortical hyperintensities and
PVSs by applying the adaptive local thresholds derived from the T2
and PD images. Recently, Wang et al. (2016) proposed a thresholding-
based semi-automatic approach to perform the PVS segmentation.
They first adjusted image intensity based on the standard slices of
basal ganglia and centrum semiovale, and then adaptively determined
a threshold with respect to the characteristics of T2-weighted image. Al-
though the target object was not exactly the PVSs, Wang et al. (2012)
proposed a multi-stage segmentation method to delineate white matter
hyperintensity, cortical infarct, and lacunar infarct. Note that the ap-
pearance of lacunar infarct is similar to the PVS except for its thickness
(i.e., lacunar infarct is usually thicker than PVS) and the lack of well-
defined orientation of the CSF-like region. In this method, the anatomi-
cal brain structure, appearance model, and morphological operations
were used and performed for segmentation of the lacunar infarct.

Training stage

A set of T1- and T2-weighted images
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Yokoyama et al. (2007) also proposed a method using intensity
thresholding and morphological operations to segment the lacunar in-
farct. Although these existing methods generate reliable results under
certain conditions, many parameters such as thresholds and/or geomet-
ric constraints have to be determined heuristically. Thus, these
methods often require manual intermediate steps such as the measure-
ment of image characteristics, landmark identification, and removal of
partial brain structures. Moreover, the informative contextual patterns
around the PVS were not considered in the simple thresholding-based
methods.

To effectively use the contextual patterns of PVSs for guiding the seg-
mentation, we propose a novel learning-based method. So far, many
learning-based methods have been proposed to segment tubular struc-
tures in other applications. These methods usually consist of a feature
extraction step and a classifier learning step. For example, Staal et al.
(2004) extracted various features from a convex region defined by
ridges of image derivatives, and then learned the k-NN classifier.
Soares et al. (2006) used Gabor wavelet transform responses at multiple
scales as features, and then learned the Gaussian mixture model for
building Bayesian classifier. Ricci and Perfetti (2007) detected a line
through a target voxel, and then used line strengths as well as the inten-
sity differences between the line and surrounding pixels as the features.
You et al. (2011) also found vessel centerlines, and then computed the
vessel strengths by using the steerable complex wavelet. For the
methods of Ricci et al. and You et al., support vector machine was
used to learn the classifier. Lupascu et al. (2010) extracted a feature vec-
tor utilizing intensity, vesselness, spatial properties, and Gabor-
wavelet-transform responses at multiple scales. The classifier was
then trained by the AdaBoost algorithm. Marin et al. (2011) extracted
a feature vector that was composed of appearance patterns and
moment-invariant-based features, and then trained the classifier by
using the neural network method. Fraz et al. (2012) extracted the fea-
ture vector utilizing the orientation analysis of gradient vector field,
and then trained the classifier using an ensemble learning method. Al-
though these methods achieve good performances for their own appli-
cations, the properties of PVSs are different from their target objects in
several aspects. First, PVSs are separated into the small and thin tubular
structures with various directions and widely spread in the white mat-
ter region, including centrum semiovale and subcortical nuclei. More-
over, the overall PVS area is very small due to their thin shapes,
compared to the whole MR image and there are many similar tubular
structures outside the white matter region (Fig. 2(a)). Therefore, it is in-
effective to learn a classifier for PVS segmentation in the whole MR
image with the conventional features.

Test stage

T1- and T2-weighted images

ROI
Setti Brain tissue WM, GM, CSF "_{0{ Brain tissue WM, GM, CSF
Setting ; > setting : ™
segmentation label map segmentation label map
Vessel filtering in Vesselness Orientation Vessel filtering in Vesselness Orientation
dilated WM region map maps dilated WM region map maps
Vesselness Vesselness
thresholding B ROLmap thresholding [ Rimp
& . * I . . * l
Classifier [ Eeature extraction |, PVS & non-PVS Prediction [o. 0 e extraction Unlabeled
Learning in ROI features in ROI features
Agto-context 1}10(161 Sequn_fz]tlal _— Classification —+  PVS result
with random forest classifiers

Fig. 1. Framework of the proposed PVS segmentation method.
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Fig. 2. (a) T2-weighted MR image, (b) dilated WM region, (c) vesselness map in the dilated WM region, (d) detected PVS ROI map by the vesselness thresholding, (e) PVS classification

result, and (f) manual ground-truth.

Fig. 3. Demonstration of patch alignment and intensity normalization before feature extraction. (Top row) The original PVS patches extracted from the T2-weighted image; (middle row)
the orientation-aligned patches; (bottom row) the (orientation and intensity) normalized patches.

To address these issues, we first define a region of interest (ROI) in
the entire MR image as voxels with vesselness above a certain threshold
within the white matter. Then, we learn a set of sequential classifiers by
using the random forest model with the randomized 3D Haar features.
To extract discriminative features for the tubular structures, we first
normalize both the principal directions and the intensity distributions
of local neighboring region, and then extract the randomized Haar fea-
tures in that normalized region. In the testing stage, we predict the labels
of all voxels in the ROI by using the trained sequential classifiers.

There are three major contributions in this paper. First, to the best of
our knowledge, this is the first learning-based method for PVS segmen-
tation. Unlike previous thresholding-based PVS segmentation methods,
our method can learn the contextual patterns around the PVSs without
any heuristic setting of threshold values. Second, our normalized fea-
tures can capture consistent patterns of PVSs even in regions with inten-
sity inhomogeneity. Moreover, since the random forest model used in
our method can select informative features from a number of random-
ized Haar features, no specific handcrafted features are needed. Finally,

our method can effectively distinguish between noisy PVS tubular struc-
tures and the ambiguous outliers by integrating the contextual features
into the sequential classifiers. As a result, our method can achieve signif-
icantly higher segmentation accuracy.

2. Materials and Method
2.1. Experimental Details

17 healthy volunteers aged from 25 to 37 participated in this study.
Written consents were obtained from all volunteers following the

Table 2
PVS classification.
PVS present PVS absent
PVS detected True positive (TP) False positive (FP)
PVS not detected False negative (FN) True negative (TN)
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Fig. 4. The average DSC scores for five sequential predictions, with respect to the use of 4
different patch sizes. For both LHF and our proposed LNHF methods, their scores were
significantly improved by the second iteration, and then gradually converged.

guidelines provided by the institutional review board. The imaging was
performed on a 7 T Siemens Scanner using a 32-channel receiver and a
single-channel volume transmit coil (Nova Medical, Wilmington, MA).
Both T1- and T2-weighted images were scanned for each subject. The
T1-weighted images were acquired by the MPRAGE sequence (Mugler
and Brookeman, 1990) with 0.65 x 0.65 x 0.65 mm?> voxel size, while
the T2-weighted images were acquired by the 3D variable flip angle
turbo-spin echo sequence (Busse et al., 2006) with 0.4x0.4x 0.4 mm>
or 0.5x0.5x0.5 mm? voxel sizes. The reconstructed images had the
same voxel sizes as those acquired images, and no interpolation was ap-
plied during the image reconstruction. Details of the MR acquisition pa-
rameters are provided in Table 1.

2.2. Generation of Ground-truth PVS Mask

To enable the training and evaluation of the proposed learning-
based PVS extraction, we first generate ground-truth PVS masks by
using a semi-automatic method based on the anatomical brain struc-
ture, vesselness thresholding, and geometric constraints (Wang et al.,
2012; Zong et al., 2016), which is then followed by manual correction
by two observers.

» We first conduct intensity inhomogeneity correction and skull stripping
by using the N3 correction method (Sled et al., 1998) and the Brain Ex-
traction tool (Smith, 2002), respectively on T1-weighted images. We
then divide the brain into WM, GM, and CSF regions by using a method

based on hidden Markov random field model (Zhang et al., 2001). Note
that T1-weighted images are used for tissue segmentation since they
have better gray-white matter contrast. Then the segmented tissue
masks are rigidly aligned to the T2-weighted image by the Flirt registra-
tion method (Jenkinson et al.,, 2002) for direct segmentation of the T2-
weighted image. Afterwards, we dilate the segmented WM region for
ensuring the inclusion of PVSs located at the boundaries of WM and
GM. An example of such dilated WM region is shown in Fig. 2(b).
Next, we calculate the vesselness (Frangi et al., 1998; Shi et al., 2011;
Cheng et al,, 2012) for each voxel in the dilated WM region. Specifically,
the T2-weighted image is used for vesselness measurement, since the
contrast between PVSs and the surrounding tissues is much higher in
the T2-weighted image. In particular, we pass the T2-weighted image
through a Gaussian kernel with a scale s, and then compute the eigen-
values of the second derivative matrix (Hessian matrix) of kernel out-
put. The three eigenvalues (A;<A,<As3) represent the magnitudes of
derivative for their associated eigenvectors v, V3, Vs, which represent
three principal directions. By following the work of Frangi et al.
(1998), the vesselness V(x) of a voxel x is defined by the ratio of three
eigenvalues as below:

0, if A2>0 or A3 > 0}

V(x) = { (1_ exp(—%)) exp(—%) (1—exp(—§)>¢
(1M

where Ry =| A2 l/IAs], Rs=| A1 |/v/AaAs), and S = /A1 + As2 + As2. The

parameters ¢, 3 and 7y control the weights of R4, R and S, respectively.
Similar to Frangi et al.'s (1998) work, cv and £ are set as 0.5, and vy is
set as the half value of maximum Hessian norm in the image. If the
smallest eigenvalue A; is small while the other two eigenvalues A, and
A3 are relatively large, a high vesselness can be obtained with Eq. (1),
and thus the respective voxel can be likely belonging to the tubular
structure. More details of this vesselness measurement method can be
found in Frangi et al. (1998)). Since the thickness of PVS is often less
than four voxels with our current imaging resolution, we compute the
vesselness values with two small scales (s= 0.5 and s = 1) for extracting
very thin or relatively thick tubular structures, and then use their max-
imum vesselness as the final vesselness for the respective voxel. We ex-
tract voxels with vesselness above a certain threshold value and divide

otherwise

© 0

©® O

Fig. 5. Segmentation refinement using the auto-context model. (a) and (e) show the MR image and its manual ground-truth labels, respectively. (b), (c), and (d) show the prediction maps
obtained by the first, second, and fifth classifiers, respectively; and (f), (g), and (h) show the segmentation results obtained by the prediction maps in (b), (c), and (d), respectively. By
repeating the prediction steps, the tubular structures become clearer and clearer (as indicated by yellow arrows), while small outlier voxels become weaker and weaker (as indicated

red arrows).
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Table 3

The average (standard deviation) of DSC, SN, and PPV scores for six fully-labeled images. (Iter. 1) denotes the prediction using the first classifier, while (Iter. 5) denotes the prediction using

the fifth classifier. The best scores are highlighted as boldface.

LHF LNHF
IT VT
(Iter. 1) (Iter. 5) (Iter. 1) (Iter. 5)
DSC 0.34 (0.09) 0.52 (0.05) 0.40 (0.07) 0.61 (0.04) 0.55 (0.05) 0.64 (0.04)
SN 0.32 (0.16) 0.54 (0.16) 0.28 (0.08) 0.57 (0.09) 0.47 (0.09) 0.59 (0.08)
PPV 0.46 (0.13) 0.56 (0.12) 0.72 (0.05) 0.71 (0.06) 0.74 (0.07) 0.73 (0.07)

Table 4

The average (standard deviation) of DSC, SN, and PPV scores for 11 testing images. (Iter. 1) denotes the prediction result using the first classifier, while (Iter. 5) denotes the prediction result

using the fifth classifier. The best scores are highlighted as boldface.

LHF LNHF
IT VT
(Iter. 1) (Iter. 5) (Iter. 1) (Iter. 5)
DSC 0.35 (0.11) 0.54 (0.06) 0.44 (0.09) 0.56 (0.09) 0.58 (0.06) 0.63 (0.05)
SN 0.36 (0.15) 0.48 (0.08) 0.32 (0.09) 0.51 (0.12) 0.52 (0.08) 0.59 (0.08)
PPV 0.43 (0.22) 0.64 (0.08) 0.72 (0.07) 0.67 (0.07) 0.67 (0.05) 0.68 (0.06)

the extracted voxels into connected clusters. Different vesselness
thresholds are empirically chosen for different images.

* Finally, the clusters with a certain range of length and thickness are set
as the PVSs. Based on the prior geometric knowledge of PVS
(Hernandez Mdel et al., 2013), the length range is set from 0.8 to
30 mm, while the thickness range is set from 0 to 2 mm. After gener-
ating PVS segmentations, two experienced imaging analysts manually
modified the segmentations using the ITK-SNAP tool (Yushkevich
et al,, 2006) and the neurite tracer plugin in Image] (Longair et al.,
2011). The manual correction is performed iteratively between the
two imaging analysts until the final consensus is reached. The PVS
masks are created for the entire brain in 6 subjects, while just for
the right hemispheres for the remaining 11 subjects.

2.3. Learning-based PVS Extraction

Our proposed method consists of 1) a training stage for classifier
learning and 2) a testing stage for PVS prediction, where both training
and testing are applied only to voxels within an ROL The overall proce-
dure is shown in Fig. 1. The ROI is set as WM voxels with vesselness
above a certain threshold. Unlike the thresholds used for delineating
PVS for generating the ground-truth mask, the threshold for ROI defini-
tion is set to be a certain low value, such that 99% of the PVS voxels
from the ground-truth masks are included in the resulting ROIL Examples
of the vesselness map and its detected PVS ROI are shown in Fig 2(c), and
(d), respectively.

2.3.1. Classifier Learning
In the classifier learning step, we train a set of sequential classifiers by
the random forest model with a number of randomized 3D Haar features.

0.7 7 T 0.8 7

T T
0.5 l T I T T =

] | +
11 oL

0.1 - [
IT VT LHF(1) LHF(5) LNHF(1)LNHF(5) IT VI

LHF(1) LHF(5) LNHF(1)LNHE(5) IT vT

* First, we randomly sample the PVS and non-PVS voxels in the detect-
ed PVS ROI, with a ratio of their numbers as around 1:30. The feature
vector f of each sample is directly related to the discriminative power
of predictor. To capture the consistent patterns of PVSs with different
orientations and intensity inhomogeneity, we first normalize both the
principal directions and the intensity distribution of local region of
each target sample voxel before extracting the feature vector. Specifi-
cally, when extracting the features at a target voxel x, we align its
neighboring voxels py = {xx||xx-x|<r}={xx| k=1, ...,K} using the
three eigenvectors vy,v,,vs as follows:

P, = vivavs]” xp,, (2)

where p,” = {x;'|k =1, ...,K} is the set of aligned voxel positions rela-
tive to the voxel x, r is the range of local region, and K is the number
of neighboring voxels. We extract a fixed-size 3D patch in the aligned
local region, and then normalize the intensity distribution by the zero-
mean unit-variance normalization. Here, r is determined to be the min-
imum radius that can make the fixed-size 3D patch completely included
in the aligned local region. Four different patch sizes (5x5x5,7x7x7,
9x9x9,11x11x 11 voxels®) are tested in the training stage, and then
the best one is used in the testing stage (Section 3.1). Fig. 3 shows typ-
ical examples of the original PVS patches, aligned PVS patches, and their
(orientation and intensity) normalized PVS patches. Since we do not
know which features are able to distinguish the PVS and non-PVS
voxels, we extract a number of randomized Haar features in each normal-
ized patch as follows:

— 6 !
fx) = Zi:lpizuxk’fxfy,\\sr,vl(xk ): 3)
where I(x,') denotes the intensity value of a voxel positioned at x;. The
parameters 6, p;, 1; and 7; represent the number of 3D cubic functions,
0.9 <
.

I .i. T ) 0.7

LRSS

LHF(1) LHF(5) LNHF(I)LNHF(5)

Fig. 6. The distributions of DSC, SN, and PPV scores for 11 testing images. The top, center, and bottom lines of each box represent the upper quartile, median, and lower quartile scores,
respectively; and also the upper and lower whiskers represent the maximum and minimum scores, respectively.
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Table 5
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Evaluation of the cluster-wise segmentation performance with 11 testing images. The number of PVS is shown in the second column, while the DSC, SN, and PPV scores are shown in the

right columns. The best scores are highlighted as boldface.

DSC SN PPV
D # of PVS
IT VT LHF LNHF IT VT LHF LNHF IT VT LHF LNHF

1 274 0.50 0.7 071 0.72 036 0.65 06 0.64 0.83 0.77 0.86 0.84
2 299 047 057 0.63 0.74 055 057 0.56 0.69 0.41 057 071 0.79
3 124 0.44 0.66 0.75 0.78 057 0.75 0.82 08 036 059 0.69 0.76
4 448 0.60 0.71 0.72 0.76 0.46 0.7 0.71 0.73 0.75 0.72 0.73 0.78
5 187 034 0.56 0.64 0.72 021 052 058 0.66 0.66 06 071 0.79
6 125 030 061 0.68 0.67 0.19 0.77 0.77 0.71 0.62 051 0.62 0.64
7 579 052 0.68 0.72 0.78 036 058 0.65 0.72 0.79 0.82 038 0.86
8 319 046 0.65 0.69 0.80 039 0.78 0.66 0.78 056 0.56 0.73 0.81
9 480 052 0.64 0.69 0.76 0.66 0.67 0.67 0.76 0.43 0.61 071 0.77
10 240 041 057 0.65 0.72 0.72 059 059 0.66 0.29 055 0.73 0.80
11 207 027 057 042 0.61 057 071 0.28 0.46 0.17 0.48 0.85 0.93
Avg. 298 0.4 0.63 0.66 0.73 0.46 0.66 0.63 0.69 053 0.62 0.74 0.80
std. 148 0.10 0.06 0.09 0.05 0.17 0.09 0.14 0.09 0.22 011 0.07 0.07

polarity, center position, and size of ith cubic function, respectively. Var-
ious Haar features can be generated by randomizing these values in
Eq. (3). In this work, we randomly chose 6 as 1 or 2, p;as +1 or -1, 7;
as 1 or 3, respectively. Since many informative features can be posi-
tioned near the tubular centerline, we extract more features near the tu-
bular centerline by controlling the parameter p;. Specifically, ; is
randomly selected with uniform distribution for the main direction of
image derivative (i.e., the first principal direction of the aligned patch),
while with the Gaussian distributions for other two directions (i.e., the
second and third principal directions) within the range of patch size.
In this way, more features are extracted along with the main direction.

» Next, we learn the classifier using the random forest model (Criminisi
et al., 2011; Criminisi and Shotton, 2013). The random forest model
consists of an ensemble of decision trees randomly trained, with
each decision tree t consisting of a collection of nodes and edges orga-
nized in a hierarchical structure. Each tree is a label/class predictor

L

(a) image (B IT (c) VT

pe(c|f), where cis a class index and fis a high-dimensional feature vec-
tor. The training is performed by splitting the training examples at
each node in the tree. Specifically, a number of feature and threshold
combinations are randomly selected to split the training examples
into two groups, and then their informative gains are computed by
using the entropy measure (Criminisi et al., 2013). Among these ran-
dom selections, the split is determined by the pair of feature and
threshold that maximizes the informative gain at the respective
node. This node splitting is repeated until the tree has reached at the
maximal depth. Note that the selected features and thresholds are
used to build simple decision functions in the internal tree nodes,
while their relevant predictors are finally established in the leaf
nodes. By considering the computational time and memory, we set
the tree size as 10, the maximum tree depth as 100, and the feature
size as 2000, respectively.

Ending parts of thin PVSs often have weak intensity, while some non-
PVSs have similar appearance patterns as the PVSs. Thus, using only

(e) LNH

£

(d) LHF (f) GT

Fig. 7. Qualitative PVS segmentation results by the IT, VT, LHF, and LNHF methods (from 2nd to 5th columns), with the manual ground-truth (GT) shown in the last column.



S.H. Park et al. / Neurolmage 134 (2016) 223-235 229

wo

(a) IT (b) VT

(é) LHF

(d)' LNHF (e) GT

Fig. 8. The 3D rendering of PVS segmentation results on the sagittal view, for the subjects with small amount of PVS (first row), moderate amount of PVS (second row), and large amount of
PVS (third row), respectively. The results of the IT, VT, LHF, and LNHF methods are shown from 1st to 4th columns, with the manual ground truth (GT) shown in the last column.

the appearance model is often limited to generate robust results. To
address this issue, we adopt the auto-context model to further inte-
grate the contextual features of tubular structure into the classifier.
In this model, the prediction map obtained by the previous classifier
is used to extract the contextual features, with which the subsequent
classifier is trained. Specifically, the first classifier is trained by the

appearance features extracted from the T2-weighted image. This clas-
sifier is then applied to the training images for generating the predic-
tion maps of training images. Next, the second classifier is trained by
using the 3D Haar features extracted from both the T2-weighted
image and the prediction map of the first classifier. The trained second
classifier is similarly applied to the training images for generating the

(a) IT (b) VT

(¢) LHF

(d) LNHF

(e) GT

Fig. 9. PVS segmentation results in four different sagittal slices (along the inferior-superior direction) for the subject with large amount of PVS shown in the last row of Fig. 8. The results by
the IT, VT, LHF, and LNHF methods are shown from 1st to 4th columns, with the manual ground-truth (GT) shown in the last column.
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Table 6
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The cluster-wise segmentation performance in the frontal lobe, parietal-occipital lobe, temporal lobe, subcortical region, and entire brain region, respectively. The number of PVS in each
region is shown in the second column, while the DSC, SN, and PPV scores are shown in the right columns. The best scores are highlighted as boldface.

DSC SN PPV
Region # of PVS

IT VT LHF LNHF IT VT LHF LNHF IT VT LHF LNHF
Frontal 1231 0.46 0.66 0.73 0.79 0.41 0.58 0.63 0.72 0.51 0.76 0.87 0.88
Parietal 1822 0.47 0.65 0.66 0.73 0.52 0.71 0.63 0.69 0.43 0.61 0.70 0.78
Temporal 110 0.44 0.51 0.62 0.67 0.43 0.45 0.53 0.62 0.45 0.58 0.73 0.75
Sub-cort. 119 0.30 0.42 0.54 0.65 0.42 0.67 0.75 0.78 0.24 0.30 0.43 0.55
Entire 3282 0.46 0.64 0.68 0.75 0.48 0.65 0.63 0.70 0.44 0.63 0.74 0.80

new prediction maps, which are used (together with the T2-weighted
image) to train the third classifier. By repeating this procedure, the se-
quential classifiers are trained. Since the results usually converged
after five iterations, we used five sequential classifiers.

2.3.2. PVS Prediction

In the testing stage, we similarly extract the normalized Haar features
at each target voxel in the detected ROI, and then pass them through the
trained decision trees from the root node to a leaf node, with respect to
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Fig. 10. The distributions of PVS volume (left), length (middle), and diameter (right) in the frontal lobe (1st row), parietal-occipital lobe (2nd row), temporal lobe (3rd row), subcortical
region (4th row), and entire region (5th row) of the brain. GT, LNHF, and VT denote the manual ground-truth (blue), our proposed LNHF (red), and the vesselness thresholding method

(green), respectively.
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Fig. 11. Typical 2D slice views from the two types of simulation images (top) and their segmentation results (bottom). The slice views from an original image and its corresponding images
with simulated motion artifact and simulated lacunes are shown in the left, middle, and right, respectively.

the established decision functions of all selected nodes. Then, all the
class labels in the selected leaf nodes of all decision trees are averaged,

ie, p(clf) = nltZ p.(c|f), where n, is the total number of trees. The
t

class label of the underlying voxel is finally determined by the maximal
prediction:

¢ = argmax.p(c|f). 4)

Similar to the training stage, the label of each voxel in the detected
PVS ROI is sequentially predicted by the learned sequential classifiers.
An example of our PVS detection result for a testing subject is shown
in Fig. 2(e).

2.4. Comparison With Other Approaches

We compare our learning-based method using the normalized Haar
features (LNHF) with 1) the method using simple intensity thresholding
(IT), 2) the method using vesselness thresholding (VT), and 3) the
learning-based method using the conventional Haar features (LHF). For
fair comparison, only voxels within the segmented WM region are
used in all comparison methods. In the IT method, we extract the voxels
with their intensity higher than a certain value in the WM region, and
then divide them into the connected clusters. Finally, we set the clusters
with certain ranges of length and thickness as the final PVSs. In the VT
method, we extract the voxels with their vesselness higher than a cer-
tain value in the WM region, and then set the connected clusters with
certain ranges of length and thickness as the final PVSs. The threshold
values for these two methods are found by cross-validations
(Section 3.1), while the ranges of length and thickness are the same as
the minimum and maximum lengths and thickness of manually-
segmented PVSs in the training set. In the LHF method, the randomized
Haar features are extracted in the patches that are not aligned with their
respective principal directions as done in our proposed method. Except
for using different features, both the LHF and LNHF methods start with

the same ROI, and employ the same numbers of trees, maximum tree
depth, feature size, and sequential classifiers. To find the optimal thresh-
olds for IT and VT methods as well as the optimal parameters for LHF
and LNHF methods, we divide the data into a training set and a testing
set. Specifically, we use the 6 images with manual labeling of each entire
image as the training set, and use the remaining 11 images with manual
labeling of only the right hemisphere of each image as the testing set.
Several model parameters are optimized for all comparison methods
on the training set with a leave-one-out cross-validation approach,
due to the limited number of training dataset. For the LHF and LNHF
methods, the optimal parameters are then used for training the sequen-
tial classifiers with the entire training set. Finally, the trained sequential
classifiers and the IT and VT methods with optimal thresholds are ap-
plied to the testing set.

The performance is evaluated in terms of Dice similarity coefficient
(DSC), sensitivity (SN), and positive prediction value (PPV) as defined
below:

2TP
D= N

_ 5
SN =15 ®)
V=T

where TP, FP, and FN denote the true positive, false positive, and false neg-
ative, respectively, as further illustrated in Table 2. DSC represents the
ratio of total number of correctly classified voxels to the average number
of all predicted PVS voxels and all true PVS voxels. Thus, it shows the over-
all classification performance, considering both the false positive and false
negative cases. SN represents the ratio of total number of correctly classi-
fied PVS voxels to the total number of the true PVSs, and thus shows how
many PVSs are not detected by an algorithm. On the other hand, PPV pre-
sents the ratio of total number of correctly classified PVS voxels to the
total number of predicted PVS, and thus shows how many outliers are de-
tected by an algorithm.

Table 7
The voxel-wise segmentation accuracy for the simulation images with motion artifacts (simulation 1) and lacunes (simulation 2). The best scores are highlighted as boldface.
IT VT LHF LNHF
(Iter. 1) (Iter. 5) (Iter. 1) (Iter. 5)
DSC 0.27 (0.12) 0.46 (0.06) 0.26 (0.08) 0.44 (0.09) 0.46 (0.07) 0.52 (0.06)
Simulation 1 SN 0.27 (0.09) 0.38 (0.06) 0.17 (0.06) 0.36 (0.11) 0.37 (0.07) 0.48 (0.08)
PPV 0.36 (0.22) 0.58 (0.10) 0.58 (0.09) 0.57 (0.08) 0.58 (0.08) 0.57 (0.07)
DSC 0.29 (0.10) 0.46 (0.05) 0.41 (0.10) 0.51 (0.09) 0.52 (0.06) 0.57 (0.05)
Simulation 2 SN 0.29 (0.08) 0.47 (0.06) 0.32 (0.10) 0.48 (0.13) 0.46 (0.09) 0.55 (0.10)
PPV 0.31(0.16) 0.47 (0.06) 0.56 (0.06) 0.56 (0.07) 0.56 (0.05) 0.58 (0.07)
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Table 8
The cluster-wise segmentation accuracy for the simulation images with motion artifacts (simulation 1) and lacunes (simulation 2). The best scores are highlighted as boldface.
IT VT LHF LNHF
(Iter. 1) (Iter. 5) (Iter. 1) (Iter. 5)
DSC 0.31(0.12) 0.53 (0.06) 0.52 (0.09) 0.54 (0.08) 0.62 (0.05) 0.63 (0.05)
Simulation 1 SN 038 (0.11) 0.55 (0.08) 0.42 (0.12) 0.46 (0.12) 0.57 (0.08) 0.58 (0.08)
PPV 0.34(0.22) 0.53(0.12) 0.73 (0.12) 0.70 (0.09) 0.70 (0.10) 0.70 (0.08)
DSC 0.31(0.14) 0.51 (0.06) 0.58 (0.06) 0.59 (0.08) 0.64 (0.04) 0.67 (0.06)
Simulation 2 SN 042 (0.11) 0.61 (0.08) 0.57 (0.13) 0.57 (0.14) 0.65 (0.10) 0.64 (0.12)
PPV 0.28 (0.17) 0.45 (0.09) 0.63 (0.09) 0.66 (0.09) 0.65 (0.10) 0.72 (0.08)

Besides evaluating the segmentation performance with voxel-wise
comparison, we also perform cluster-wise comparison, since the PVSs
can be separated as small thin clusters and the number of clusters and
their geometric properties (such as volume, length, and thickness) are
closely related to the brain abnormalities (Maclullich et al., 2004;
Rouhl et al., 2008; Doubal et al., 2010). For this purpose, the cluster-
wise detection ratios are defined as follows. Specifically, we divide
both the automated segmentation result and its ground-truth into con-
nected clusters, and then count the numbers of true positive, false pos-
itive, and false negative in terms of clusters. If a part of cluster in the
automated segmentation result overlaps with a part of cluster in the
manual ground-truth, we set this cluster as a true positive cluster. On
the other hand, if a cluster is in the automated segmentation result,
but not in the manual ground-truth, we set this cluster as a false positive
cluster. Similarly, if a cluster is in the manual ground-truth, but not in
the automated segmentation result, we set this cluster as a false nega-
tive cluster. Finally, the DSC, SN, and PPV scores were calculated from
the numbers of true positive, false positive, and false negative clusters.

To demonstrate that our proposed method can be used for quantita-
tive study of PVSs, we also evaluate the cluster-wise segmentation perfor-
mance in four sub-regions of the brain (i.e., the frontal lobe, parietal-
occipital lobe, temporal lobe, and subcortical region), as well as the simi-
larity of geometric properties between the predicted and true PVSs. The
morphological PVS features extracted from different methods are com-
puted by the volume (V), length (L), and diameter (D) of each cluster in
the manual ground-truth and in the segmentation results by the VT and
LNHF methods. Then, we compare these three distributions in each sub-
region and the entire brain. To measure the length L, we first extract the
centerline of tubular structure by using a thinning algorithm (Lee et al.,,
1994; Kerschnitzki et al,, 2013), and then compute the manifold distance
of the longest path connecting any pair of voxels within the thinned clus-

ter. The diameter D of each cluster is calculated as: D = 2/V/Lm.

2.5. Simulation

To demonstrate the potential ability of our method against motion ar-
tifacts and other subcortical lesions, we generate two types of simulation
images with motion artifacts and lacunes. The motion artifacts are simu-
lated by adding random phase noise to the k-space images. Specifically,
the magnitude images of the original TSE images are inversely
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Fig. 12. The distributions of PVS volume (a), length (b), and diameter (c) for the true positive (TP), false positive (FP), and false negative (FN) clusters, respectively.
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transformed with Fourier transformation along all three spatial dimen-
sions to obtain the k-space images. Then, a random phase shift is applied
to each k-space data point. Since the phase noise caused by motion is pro-
portional to the product of motion (i.e., head displacement) and the zero-
order moments of the phase encoding gradients, the phase noise at each
k-space position is simulated as: 2 [Uy-(% —0.5) + 0:(¢ — 0.5)], where
N, and N;, are the numbers of phase encoding steps along the y (left-right)
and z (inferior-superior) directions, respectively, n, (=0,1,--*N,-1) and
n,(=0,1,--N,-1) are the phase encoding step indices, and 0, and o, are
two random numbers from a Gaussian distribution with zero mean and
standard deviation of 0.4, where the standard deviation is proportional
to the severity of motion. The value of 0.4 was chosen to achieve motion
artifact levels comparable to those in typical clinical images. We assume
no motion along the anterior-posterior direction because our subjects
are lying on the back of their heads and thus motion along the anterior-
posterior direction is less likely to happen. The lacunes are simulated by
modifying image intensities of voxels near the PVSs. Specifically, we ran-
domly select 20% of PVSs in each subject and dilate the masks of selected
PVSs using a dilation filter with 5x5x 5 voxels (2.0-2.5 mm?>). For each
dilated region, we compute the difference between the mean intensities
of the PVS and the dilated region, and then increase the intensities of
the dilated region with that difference. We apply the IT, VT, LHF, and
LNHF methods to these two types of simulation images and then compare
their voxel- and cluster-wise accuracies.

3. Results
3.1. Model Learning and Optimization

We tested six intensity threshold values (250, 300, 350, 400, 450,
500) for the IT method and six vesselness threshold values (0.002,
0.003, 0.004, 0.005, 0.006, 0.007) for the VT method. The average DSC
of the IT method was from 0.12 to 0.34 for the six intensity thresholds,
and the best DSC was obtained with the threshold value 300. On the
other hand, the DSC of the VT method was from 0.37 to 0.52 for the
six vesselness thresholds, and the best DSC was obtained with the
threshold value 0.006. In both the LHF and LNHF methods, the segmen-
tation accuracies were gradually improved and then converged as the
numbers of trees and features increased. Fig. 4 shows the average DSC
scores for five sequential predictions with the different patch sizes.
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Fig. 5 shows how the prediction maps and segmentation results change
with respect to the sequential predictions. When using only the appear-
ance features in the first iteration, the DSC was from 0.29 to 0.37 by the
LHF method, while from 0.51 to 0.56 by the LNHF method. In the fifth
iteration, the DSC was from 0.57 to 0.61 by the LHF method, while
from 0.62 to 0.64 by the LNHF method. The best scores were obtained
with the patch size 7x 7 x 7 for both methods. Table 3 reports the re-
spective average DSC, SN, and PPV scores. It can be observed that our
proposed LNHF method outperformed all comparison methods in
terms of all three scores.

3.2. Model Testing

The methods, with the optimal parameters determined by the 6
training images, were then applied to the 11 testing images. Since the
labels of testing images were created only in the right hemisphere,
each brain image was first separated into the left and right hemispheres
by an existing method (Li et al., 2013). Then, the prediction was con-
ducted on the right hemisphere. Table 4 and Fig. 6 show the average
(standard deviation) DSC, SN, and PPV scores and their respective distri-
butions for the voxel-wise segmentation accuracy. Table 5 shows the
number of PVSs and the DSC, SN, and PPV scores of the cluster-wise seg-
mentation accuracy. Figs. 7 and 8 show typical examples of qualitative
results in both 2D slice views and 3D rendering views. Fig. 9 further
shows the qualitative results on several sagittal slices extracted from
the subject with large amount of PVSs as shown in the bottom row of
Fig. 8.

3.3. Morphological Properties

Table 6 shows the number of PVSs and the cluster-wise segmenta-
tion accuracy in the four sub-regions and the entire brain. In our testing
dataset, 37.5%, 55.5%, 3.4%, and 3.6% of PVSs were positioned in the fron-
tal lobe, parietal-occipital lobe, temporal lobe, and subcortical region,
respectively. Our proposed LNHF method outperformed the other
methods in almost all sub-regions and entire brain except for the SN
score in the parietal-occipital lobe. Fig. 10 shows the volume (V), length
(L), and diameter (D) distributions of the predicted and true PVSs in the
four sub-regions and the entire brain. Compared to the other segmenta-
tion methods, the distributions for LNHF resemble more closely to the
distributions of the ground-truth.

3.4. Simulations

The two types of simulation images are shown in Fig. 11. Tables 7
and 8 provide the DSC, SN, and PPV for the voxel-wise and cluster-
wise analyses, respectively. For the second simulation regarding the im-
pact of lacunes, 11.8%, 22.4%, 2.0%, and 1.6% of lacunes were detected as
PVSs (false positive) by the IT, VT, LHF, and LNHF methods, respectively.
Since the simulation images included more ambiguous outliers, the
overall performances decreased for all of the comparison methods.
However, our LNHF method still outperformed other comparison
methods for the most cases.

4. Discussion

We compared the segmentation accuracy between our LNHF meth-
od and other three methods (IT, VT, and LNH). Although the N3 correc-
tion method (Sled et al., 1998) was performed to address intensity
inhomogeneity in the WM region, it was difficult to ensure a consistent
intensity distribution for all PVSs. Due to inconsistent intensities of
PVSs, the IT method could not find a single threshold that was suitable
for all testing images. Thus, the IT method often either detected many
outliers as the PVSs or missed many true PVSs. On the other hand, the
VT method gave much better and robust results by considering the
local structure. However, outliers with tubular structures near the

boundaries between WM and GM were often extracted as PVSs
(Figs. 7 and 8). Moreover, thin tubular structures (e.g., with the thick-
ness less than 2 voxels) were often not extracted. Compared to these
thresholding-based methods (IT and VT), the LHF method gave better
segmentation accuracy by incorporating segmentation contextual pat-
terns into the training of classifiers. Nonetheless, the discriminative
power of classifier was still limited due to the use of inconsistent fea-
tures. Especially, the accuracy of LHF method with the first classifier
was often worse than that of VT method, since it was hard to capture
the consistent appearance patterns of PVSs by using the conventional
Haar features. On the other hand, our proposed LNHF method
outperformed both thresholding-based methods, even using only the
appearance features. Moreover, it is worth emphasizing that our pro-
posed LNHF method is much more robust against the use of different
patch sizes. As shown in the right panel of Fig. 4, the DSC scores of our
proposed LNHF method were comparable with respect to the use of dif-
ferent patch sizes (i.e., 7x7x7,9%x9x9,11x11x 11), since our method
was able to consistently extract Haar features near the tubular
centerline.

In both learning-based (LHF and LNHF) methods, many ambiguous
PVS voxels were not classified as PVSs in the first iteration. Thus, al-
though these two methods obtained the best PPV scores with the first
classifiers in both training and testing stages (Tables 3 and 4), they
also had high false negative errors. As a result, the DSC and SN scores
in the first iteration were much lower than those in the final iteration.
As the prediction was repeated iteratively, the accuracy of each of
these two learning-based methods was progressively improved. Specif-
ically, by integrating the contextual features into the training of sequen-
tial classifiers, the tubular structures were more clearly detected, while
many small outlier voxels were removed, as shown in Fig. 5. Finally, the
false negative errors were significantly reduced in the final iteration,
while still keeping the comparable PPV score as in the beginning.

Our proposed LNHF method also outperformed all other methods in
terms of both the subject- and region-wise segmentation accuracies as
shown in Tables 5 and 6, respectively. Specifically, our method achieved
the average DSC gains of 32%, 10%, and 7%, compared to the IT, VT, and
LHF methods. Note that the VT method identified many ambiguous struc-
tures as the PVSs, and thus its SN score was slightly higher than our meth-
od in the parietal-occipital lobe. But its DSC and PPV scores were much
lower than our method, due to its high false positive errors. Compared
to the previous PVS rating scales that were often measured by the number
of PVS on the partial 2D slices, we found much larger numbers of PVS
(i.e., a few hundred vs. a few tens), even in the healthy young subjects.
We believe that, with the optimized imaging sequence and PVS segmen-
tation approaches we have developed, the PVS can be quantified in much
greater details (such as obtaining the length, diameter, and volume distri-
butions), compared to the previous PVS rating scales.

Regarding the geometric properties (Fig. 10), the VT method often
over-segmented the PVSs and resulted in many small segments with
volumes less than 1 mm?®. Since these small segments partially over-
lapped with the true PVSs, the VT method often obtained good SN
score in terms of the cluster-wise accuracy. However, in terms of
voxel-wise accuracy, the VT method had high false positive error rates
as well as low DSC score because only small parts of PVS overlapped
with the ground truth. On the other hand, our proposed LNHF method
could reliably segment the PVSs with various sizes. Compared to the
manual ground-truth, our method segmented slightly more clusters
with short lengths (around 2-3 mm). This was mainly because of the
challenge of accurately segmenting the ending parts of PVSs due to
their ambiguous appearance as shown in Fig. 5(e)-(h). However, the
overall shapes of volume and length distributions were more similar
to those of manual ground-truth, compared to the VT method. The di-
ameters of most predicted and true PVSs were less than 1 mm, and
there was no significant difference between two methods.

To analyze the tendency of segmentation errors, we further provide
the distributions of volume, length, and diameter for the true positive,
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false positive and false negative clusters in Fig. 12. As can be seen, the
volumes and lengths of most false positive clusters were relatively
small and short, while the volumes and lengths of most false negative
clusters were larger than those of false positive clusters, but less than
those of true positive clusters. The diameters of most false positive
and false negative clusters were also thinner than those of the true pos-
itive clusters. Fig. 12 indicates that most false positive and false negative
errors of our method occur in very ambiguous cases, such as the PVSs
with the short length (i.e., less than 2 mm, or 4-5 voxels) and with
the thin diameter (i.e., less than 0.8 mm, or 1-2 voxels). Since these
PVSs are similar to some outliers in the WM region, it is often ambigu-
ous even for the observers to manually delineate them. On the other
hand, most PVSs with long length and thick diameter are well classified
by our proposed method. Since the PVSs are dilated in variable neuro-
logical diseases, our method may be especially useful for the study of
PVS abnormality in such patients.

A potential limitation of our work is that the validations were con-
ducted using the high-resolution images obtained from healthy young
subjects. It is desirable to apply our method to clinical scenarios,
where MR images are often acquired with shorter acquisition times
and/or lower spatial resolution, along with motion artifacts and subcor-
tical lesions (e.g., white matter hyperintensities/lacunes). Based on the
simulation images, we have demonstrated that our method is more ro-
bust than other comparison methods for the cases with motion artifacts
and lacunes (Section 3.4). In clinical populations, subcortical lesions
such as WM hyperintensities can also coexist with PVSs. However,
since such lesions are usually more distinct from PVSs than lacunes,
our method may be more robust compared to the thresholding based
methods. Another issue is that the increase of PVS density can make
the gap between PVSs decrease. Although these effects may increase
the ambiguity, we expect that our method will be able to learn the relat-
ed patterns during the classifier learning phase, if enough training data
with similar patterns are available. Specifically, a potential approach is
to use cluster-wise information along the tubular centerline of the
tentatively-segmented PVSs, such as intensity distribution or geodesic
distance (Bai and Sapiro, 2007), to distinguish the complex patterns. Re-
garding the motion artifacts, the current imaging sequence takes about
12-13 min, which would be challenging for elderly subjects and pa-
tients, which are the target subjects in our future study. For these sub-
jects, we are currently exploring different rapid acquisition
approaches such as the variable flip angle GRASE sequences and com-
pressed sensing image reconstruction. Finally, image resolution is an-
other significant issue because it is difficult to acquire the 7 T high-
resolution images at lower fields. Since the contrast-to-noise ratio of
image is generally higher at lower resolution and our method works
well on thin PVS, we expect our approach to be applicable at millimeter
resolution as well. However, due to the small size of PVS in normal sub-
jects (0.13-0.96 mm; Pesce and Carli, 1988), 1 mm resolution is unlikely
to provide accurate characterization of the PVS morphology, especially
in healthy young subjects. We expect that our method will be applicable
to the lower-resolution images scanned from old subjects or patients
due to their high density of PVSs. Accordingly, there are still some chal-
lenges on clinical imaging application of our method on the aging and
patient populations such as with the focal atrophy, diffuse and punctate
WM hyperintensities, loss in WM density, cerebral microbleeds and
juxtacortical lesions. In the future, we will apply our method to quanti-
tatively study the development of PVS abnormality in patients with
neurological diseases, such as small vessel disease, multiple sclerosis,
and Alzheimer's disease (Doubal et al., 2010; Cai et al., 2015; Kilsdonk
et al,, 2015).

5. Conclusion
We have proposed a learning-based method for PVS segmentation.

Our method can effectively learn the intensity and contextual patterns
of PVSs by using the (orientation and intensity) normalized Haar

features, and train the sequential classifiers using the random forest
model. Our method outperforms both the thresholding-based methods
and a learning-based method using conventional Haar features. Our
method can be used for future quantitative studies of PVS morphology
which may help illuminate their relationship with neurological
diseases.
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